## Motion Basics

Notations: $x$ Displacement (different from distance travelled)
$\dot{x}$ Velocity (directional - one dimension only in this context); $v=\dot{x}=\frac{d x}{d t}$
$\ddot{x} \quad$ Acceleration (change of Velocity - directional as well); $\quad a=\ddot{x}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}$

It is generally assumed that when $t=0, x(0)=0$ and $v(0)=u$ unless stated otherwise. It follows that $[x(t)]_{0}^{x}=x=\int_{0}^{t} v(t) d t \quad$ and $\quad[v(t)]_{u}^{v}=v-u=\int_{0}^{t} a(t) d t$

Other "unconventional" notations or assumptions:
Overloading of the same symbol as dummy variables: e.g. In $x=\int_{0}^{t} v(t) d t$, the $t$ in $\int_{0}^{t}$ is the parameter of function $x(t)$, while the $t$ in $v(t) d t$ is a dummy variable for the integration form.
(But writing $x=\int_{0}^{t} v(u) d u$ would be even more confusing.)
Same measurement but different parameters:
e.g. $v(t)$ is velocity in terms of time, while $v(x)$ is velocity at a position.

## Simple Facts

Either $u \neq 0$ or $\ddot{x} \neq 0$ is required to kick start the motion. $v=0$ and $\ddot{x}=0$ means the particle remain stationary, which is different from being momentarily stationary when $v=0$ but $\ddot{x} \neq 0$.

Notes on Physics: $\quad F=m a=m \ddot{x} \quad$ (Newton's Second Law) is the only formula of Physics involved in this context.
(Newton's First Law: No force, no acceleration. The particle remains stationary or travel at constant speed along a straight line.)
All other relations will be given in terms of $x, \dot{x}, \ddot{x}$ and $t$. Some may have physical meaning
(e.g. $a(x)$ is a force field), while others in this context may not reflect how the nature works.

Some measurements are encapsulated in constants to suit this level of mathematics.
However, mass $m$ is usually left out so that it can be cancelled in $F=m a$. e.g. $R=m k v$
"One on One": In many motion problems, it is required to express $x, v, a$ and $t$ in terms of one another.
Find $a$ from $v(x): \quad \ddot{x}=v \cdot \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \quad \ddot{x}=\frac{d v}{d t}=\frac{d x}{d t} \cdot \frac{d v}{d x}=v \cdot \frac{d v}{d x}$

Find $v^{2}$ from $a(x): \quad a(x)=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right), \quad \int_{0}^{x} a(x) d x=\left[\frac{1}{2} v^{2}\right]_{u}^{v}, \quad v^{2}=u^{2}+2 \int_{0}^{x} a(x) d x$
Alternatively, $\quad a(x)=v \cdot \frac{d v}{d x}, \quad \int_{0}^{x} a(x) d x=\int_{0}^{x} v \cdot \frac{d v}{d x} d x=\int_{u}^{v} v d v=\left[\frac{1}{2} v^{2}\right]_{u}^{v}, \quad v^{2}=u^{2}+2 \int_{0}^{x} f(x) d x$

Find $v$ from $a(v): \quad \frac{d v}{d t}=a(v), \quad \frac{d t}{d v}=\frac{1}{a(v)}, \quad t=\int_{u}^{v} \frac{d v}{a(v)}, \quad \ldots$

Find $x$ from $a(v): \quad a(v)=v \cdot \frac{d v}{d x}, \quad \frac{d x}{d v}=\frac{v}{a(v)}, \quad x=\int_{u}^{v} \frac{v}{a(v)} d v, \quad \ldots$

